

Periodic Trends

Atomic Radius, Ionization Energy, Electronegativity, Ionic Size, and Reactivity

Periodic Properties

- The periodic variation in properties is based on <u>electron</u> <u>configuration</u>
- Eight (8) electrons in the valence level makes an atom very stable and generally <u>unreactive</u>
- Filled and half-filled sublevels also add stability
- Atoms react to become more stable

Four Factors to Consider

- 1. Number and arrangement of valence electrons
 - Most feasible way to obtain a stable octet (gain, lose or share)
- 2. <u>Coulombic</u> Attractions
 - Attraction of positive nucleus for negative electrons
- 3. Number of <u>energy levels</u>
 - Distance from nucleus
- 4. Shielding
 - The number of energy levels between the nucleus and valence level which reduces the pull of the nucleus

Periodic Trends

Many trends of elements can be explained by electron configuration and position on the periodic table.

Trends to be examined:

- Atomic Radius
- Ionization Energy
- Electronegativity
- Ionic Radius
- Electron Affinity

Atomic Radius

One half of the distance between the <u>nuclei of two atoms</u> of the same element when the atoms are joined together

Atomic Radius – Down a group

 In general, as you go <u>down a group</u>, atomic size <u>increases</u> from top to bottom due to more energy levels

Atomic Radius – Down a Group

- Atomic radius increases down a group due to:
 - Higher energy levels = farther away from the nucleus so atoms get bigger
 - Shielding = core e- block the attraction between the nucleus and valence e-

Atomic Radius – Across a Period

As you move across a period from <u>Left to Right</u>, atomic radius <u>decreases</u>

As you go from L to R, e- are put into the same orbital, but more p+ and e- total (more attraction = smaller size)

Decrease in Atomic Radius Increase in Atomic Radius н He F Li Be В N Ne C 0 Na Mg AI Si P S CI Ar K Ca Mn Ga Ge As Sc Cr Fe Co Ni Cu Zn Se Br Kr Ti Rb Sr Y Zr Nb Mo Rh Pd Sn Sb Ru Cd Te Tc Ag In Xe Ba Lu Hf Hg Cs Та W Re Os Ir Pt Au TI Pb Bi Po At Rn Ra Lr Fr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb * Pr La Ce Ac Th Pa U Np Pu AmCm Bk Cf Es Fm Md No

Question?

- Which has the largest atomic radius?
 - Chlorine
 - Se Fluorine
 - Iodine
 - Bromine
 - Answer: <u>Iodine</u>
- Why?
 - Answer: Iodine has the most energy levels (furthest down the periodic table)

Ionization Energy

- The ability of an atom to hold onto it's outer most electron
- The bigger the value the <u>harder</u> to lose (the stronger it is holding its electron!)
- The energy required to remove the first electron from an atom is called the first <u>ionization energy</u>
 - The energy required to remove an electron from an ion with a 1+ charge is called the second ionization energy

Ionization Energy Trends

- Server Group Trend:
 - As you go <u>down a group</u>, ionization energy <u>decreases</u>.
 - Why?
 - As you go down, atomic size is increasing (less attraction), so easier to remove an e-

Ionization Energy Trends

- Periodic Trend:
 - Solution As you go <u>across a period (L to R)</u>, ionization energy <u>increases</u>
 - Why?
 - As you go L to R, atomic size is decreasing (more attraction), so more difficult to remove and e-
 - Also, there are the same number of energy levels, but there are more protons pulling stronger on the outer most electrons

Question?

- Which has the lowest ionization energy?
 - Chlorine
 - Sodium
 - Magnesium
 - Argon
 - Answer: <u>Sodium</u>
- Why?
 - Answer: They all have the same number of energy levels, but sodium has the least protons therefor the least strength to hold an outer electron

Electronegativity

 The ability of an atom to <u>steal an electron</u> from another atom (electron thieves)

"Perhaps one of you gentlemen would mind telling me just what it is outside the window that you find so attractive...?"

Electronegativity – Down a Group

- Server Group Trend:
 - As you go <u>down</u> a group, electronegativity <u>decreases</u>
 - Why?
 - As you go down, atomic size is increasing, so less attraction to its own e- and other atom's e-

Electronegativity – Across a Period

- Periodic Trend:
 - As you go <u>across a period</u> (L to R), electronegativity <u>increases</u>
 - Why?
 - AS you go L to R, atomic size is decreasing, so there is more attraction to its own e- and other atom's e-

Increase in Electronegativity

Question?

- Which has the largest electronegativity?
 - Chlorine
 - Sodium
 - Magnesium
 - Argon
 - Answer: <u>Chlorine</u>
- Why?
 - They all have the same number of energy levels, but chlorine has the most protons therefor the most strength to steal an electron. Remember not Argon, because it is a nobel gas and have a full outer shell already!

Trends

Atomic Radius, Electronegativity, Ionization Energy